阿基米德利用圆锥曲线解一元三次方程的方法百

2019-02-01 作者:科技在线   |   浏览(97)

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  展开全部设D是抛物线弧ABC的弦AC的中点,过D作直线平行于抛物线的轴OY,交抛物线于B.证明:抛物弓形ABCD的面积等于△ABC面积的 4/3.当时已经知道过B的切线平行于AC,即B是弓形的顶点(在ABC弧上与AC距离最远的点).命题结论的另一种说法是:抛物弓形的面积,是等底等高的三角形的4/3.用解析几何来分析,设抛物线)A,C的横坐标分别是x1,x2,则AC的方程是:y=ax1x+ax2x-ax1·x2(2)

  作AF//OY,交CF于F.延长CB交AF于K,则K是FA的中点.再取KH=KC,过AC上任意点M作MQ//OY,交CK于P,交CF于Q,交抛物线),得M,N,Q的纵坐标:

  上面推出的几个性质,有的前人已证明,有的阿基米德在别处已证明,在这里是作为已知条件来使用的.例如:1)过D且平行于轴的直线必过弓形的顶点B,且B是ED中点,在欧几里得以及阿里斯泰奥斯(Aristaeus,约公元前340年)的圆锥曲线论中已证明,在阿基米德的《抛物线)MQ∶MN=AC∶AM是同一篇论文的命题5.

  假想各线段都是有重量的,而且重量和长度成正比.又HP是一根以K为支点的杠杆.因为MQ∶MN=HK∶KP,如果将MN放在H点,就可以和位于杠杆另一端的MQ平衡,P是MQ的重心.这关系对于任意的M都成立.弓形可以看作由许多这样的MN线段所组成,而△AFC由许多的MQ线段所组成.如果将所有的MN(也就是整个弓形)都放在H上(以H为重心),就可以和△AFC平衡.弓形的重量可以看作完全集中在H点,而△AFC的重量也可以看作集中在它的重心上,这重心位于中线KC上,与K的距离是KC(=KH)的1/3,故弓形重量(即面积)是△AFC重量(即面积)的1/3.又△AFC=4△ABC,故知弓形ABCD的面积是△ABC的4/3.

  只含有一个未知数(即“元”),并且未知数的最高次数为3(即“次”)的整式方程叫做一元三次方程(英文名:one variable cubic equation)。一元三次方程的标准形式(即所有一元三次方程经整理都能得到的形式)是ax3+bx2+cx+d=0(a,b,c,d为常数,x为未知数,且a≠0)。一元三次方程的公式解法有卡尔丹公式法与盛金公式法。两种公式法都可以解标准型的一元三次方程。由于用卡尔丹公式解题存在复杂性,相比之下,盛金公式解题更为直观,效率更高。

  本科学历,毕业后从事设计工作;现任标码石材科技有限公司设计员。能决绝结构设计方面中等难度问题。只含有一个未知数(即“元”),并且未知数的最高次数为3(即“次”)的整式方程叫做一元三次方程(英文名:cubic equation of one unknown)。一元三次方程的标准形式(即所有一元三次方程经整理都能得到的形式)是ax3+bx2+cx+d=0(a,b,c,d为常数,x为未知数,且a≠0)。一元三次方程的公式解法有卡尔丹公式法与盛金公式法。两种公式法都可以解标准型的一元三次方程。由于用卡尔丹公式解题存在复杂性,相比之下,盛金公式解题更为直观,效率更高。

  6902获赞数:40395向TA提问展开全部设D是抛物线弧ABC的弦AC的中点,过D作直线平行于抛物线的轴OY,交抛物线于B.证明:抛物弓形ABCD的面积等于△ABC面积的 4/3.当时已经知道过B的切线平行于AC,即B是弓形的顶点(在ABC弧上与AC距离最远的点).命题结论的另一种说法是:抛物弓形的面积,是等底等高的三角形的4/3.用解析几何来分析,设抛物线)A,C的横坐标分别是x1,x2,则AC的方程是:y=ax1x+ax2x-ax1·x2(2)

  作AF//OY,交CF于F.延长CB交AF于K,则K是FA的中点.再取KH=KC,过AC上任意点M作MQ//OY,交CK于P,交CF于Q,交抛物线),得M,N,Q的纵坐标:

  上面推出的几个性质,有的前人已证明,有的阿基米德在别处已证明,在这里是作为已知条件来使用的.例如:1)过D且平行于轴的直线必过弓形的顶点B,且B是ED中点,在欧几里得以及阿里斯泰奥斯(Aristaeus,约公元前340年)的圆锥曲线论中已证明,在阿基米德的《抛物线)MQ∶MN=AC∶AM是同一篇论文的命题5.

  假想各线段都是有重量的,而且重量和长度成正比.又HP是一根以K为支点的杠杆.因为MQ∶MN=HK∶KP,如果将MN放在H点,就可以和位于杠杆另一端的MQ平衡,P是MQ的重心.这关系对于任意的M都成立.弓形可以看作由许多这样的MN线段所组成,而△AFC由许多的MQ线段所组成.如果将所有的MN(也就是整个弓形)都放在H上(以H为重心),就可以和△AFC平衡.弓形的重量可以看作完全集中在H点,而△AFC的重量也可以看作集中在它的重心上,这重心位于中线KC上,与K的距离是KC(=KH)的1/3,故弓形重量(即面积)是△AFC重量(即面积)的1/3.又△AFC=4△ABC,故知弓形ABCD的面积是△ABC的4/3.

  展开全部只含有一个未知数(即“元”),并且未知数的最高次数为3(即“次”)的整式方程叫做一元三次方程(英文名:cubic equation of one unknown)。一元三次方程的标准形式(即所有一元三次方程经整理都能得到的形式)是ax3+bx2+cx+d=0(a,b,c,d为常数,x为未知数,且a≠0)。一元三次方程的公式解法有卡尔丹公式法与盛金公式法。两种公式法都可以解标准型的一元三次方程。由于用卡尔丹公式解题存在复杂性,相比之下,盛金公式解题更为直观,效率更高。可以参考:

阿基米德利用圆锥曲线解一元三次方程的方法百

科技在线推荐